ПAmIBIA UחIVERSITY OF SCIEחCE AПD TECHחOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science Honours in Applied Mathematics	
QUALIFICATION CODE: 35BAMS	LEVEL: 8
COURSE CODE: PDE 801S	COURSE NAME: PARTIAL DIFFERENTIAL EQUATIONS
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 90

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	ProfA. S. EEGUNJOBI
MODERATOR:	Prof O.D. MAKINDE

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1 [25 marks]

1. (a) From the following equations, form partial differential equations by eliminating the arbitrary contacts g, h and j.
i.

$$
\begin{equation*}
z=g x e^{y}+\frac{g^{2} e^{2 y}}{2}+h \tag{5}
\end{equation*}
$$

ii.

$$
\begin{equation*}
z=g(x+y)+h(x-y)+g h t+j \tag{7}
\end{equation*}
$$

(b) By eliminating arbitrary functions from the followings, form the partial differential equation
i.

$$
\begin{equation*}
z=(x-y) f\left(x^{2}+y^{2}\right) \tag{7}
\end{equation*}
$$

ii.

$$
\begin{equation*}
f\left(x^{2}-y^{2}, x y z\right)=0 \tag{6}
\end{equation*}
$$

QUESTION 2 [20 marks]

2. Solve the following first order PDE
(a) $\left(y^{2}+z^{2}\right) \frac{\partial z}{\partial x}-x y \frac{\partial z}{\partial y}+x z=0$
(b) $(z+x) \frac{\partial z}{\partial y}+(y+z) \frac{\partial z}{\partial x}-x-y=0$
(c) $x(y-z) \frac{\partial z}{\partial x}+y(z-x) \frac{\partial z}{\partial y}=z(x-y)$
(d) $\left(x^{2}+2 y^{2}\right) \frac{\partial z}{\partial x}=x y \frac{\partial z}{\partial y}+x z$

QUESTION 3 [25 marks]

3. (a) Classify, reduce to normal form and hence solve

$$
\begin{equation*}
3 u_{x x}+10 u_{x y}+3 u_{y y}=0 \tag{9}
\end{equation*}
$$

(b) Classify, reduce to normal form and hence solve

$$
\begin{equation*}
u_{x x}+2 u_{x y}+u_{y y}=0 \tag{9}
\end{equation*}
$$

(c) Classify and reduce to normal form

$$
\begin{equation*}
y^{2} u_{x x}+x^{2} u_{y y}=0 \tag{7}
\end{equation*}
$$

QUESTION 4 [20 marks]

4. (a) Solve

$$
\begin{equation*}
\frac{1}{4} \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}=0 \tag{10}
\end{equation*}
$$

given that $u(0, y)=12 e^{-5 y}$.
(b) Find the solution of the Cauchy problem

$$
\begin{equation*}
u_{t t}-c^{2} u_{x x}=0, \quad x \in \mathbb{R}, \quad t>0, \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x), \quad x \in \mathbb{R} \tag{10}
\end{equation*}
$$

End of Exam!

